Author Topic: NEC Develops High Performance Bioplastic with a High Plant Ratio by Using Non-ed  (Read 2237 times)

0 Members and 1 Guest are viewing this topic.

Offline Nick

  • Administrator
  • Platinum Member
  • *
  • Posts: 46028
  • Karma: +1000/-0
  • Gender: Male
  • NickCS
    • http://www.facebook.com/nickcomputerservices
    • http://www.twitter.com/nickcomputer
    • Computer Chiangmai

NEC Develops High Performance Bioplastic with a High Plant Ratio by Using Non-edible Plant Resources

Advanced bioplastic from plant stems and cashew nut shells


NEC Corporation announced the development of a first-of-its-kind durable new biomass-based plastic (bioplastic) that is produced from non-edible plant resources. The bioplastic is created by bonding cellulose (*1), a main component of plant stems, with cardanol (*2), a primary component of cashew nut shells, which achieves a level of durability that is suitable for electronic equipment and boasts a high plant composition ratio of more than 70%.

The new bioplastic characteristics are as follows:

1. Composed of non-edible plant resources

As an alternative to petroleum-based components, cellulose is the plastic's major ingredient. The cellulose, which is produced in large amounts by plants, including grass stems, etc., is modified by cardanol, an oil-like material that is extracted from cashew nut shells. Most of these stems and nut shells are abundant resources, which are often discarded byproducts of the agricultural process.

2. High plant component ratio

The use of cellulose and cardanol, both plant resources, as the plastic's primary components produces a plastic that features a high plant component ratio of more than 70%. Current cellulose based plastics include large amounts of petroleum-based additives, which results in a low plant component ratio.

3. High durability well suited for electronics

After enhancing its reactivity, cardanol is chemically bonded with cellulose, which produces a durable thermo-plastic that is strong, heat resistant, water resistant and non-crystalline (short molding time), due to the bonded cardanol's unique molecular structure consisting of flexible and rigid parts.

Comparison to existing bioplastics: polylactic acid resin (PLA) (*3) and cellulose acetate (CA) based resin

- Durability (strength & malleability): Twice the strength of existing PLA. Comparable to conventional CA resin  

- Heat resistance (glass transition temperature): More than twice the resistance of PLA, approximately 1.3 times more than CA resin

- Water resistance: Comparable to PLA, approximately 3 times more than CA resin

- Molding time: Less than 50% of PLA. Comparable to conventional cellulose-based and petroleum-based plastics.

In recent years, bioplastics composed from plant resources gathered greater attention as an effective measure to reduce the depletion of petroleum resources and alleviate global warming. However, while current leading bioplastics, such as PLA, primarily use feed grains as a plant resource, the possibility of future food shortages has emphasized the importance of using non-edible plant resources to produce bioplastics.

Therefore, non-edible plant-based bioplastics have been developed using such resources as cellulose and castor oil (*4). These cellulose-based bioplastics have conventionally been utilized in stationery, toys and household goods. However, these modified celluloses require large amounts of petroleum-based additives such as plasticizers, which results in bioplastics with a low plant component ratio and poor durability, including heat resistance and water resistance.

A polyamide resin derived from castor oil, a non-edible plant resource is also being used in electronic parts, however, there is an inadequate supply of this plant resource to expand its use and its characteristics are unsuitable for use in a variety of electronics.

However, NEC's newly developed bioplastic resolves each of these issues. Looking forward, the company will continue with research and development towards mass production of this bioplastic and improving its suitability for a wide range of electronic equipment within the 2013 fiscal year.

This newly developed bioplastic will be formally announced at The Chemical Society of Japan / Kanto Branch meeting at the University of Tsukuba on August 31, 2010.


ที่มา: nationmultimedia.com


 
Share this topic...
In a forum
(BBCode)
In a site/blog
(HTML)


Related Topics

  Subject / Started by Replies Last post
0 Replies
9191 Views
Last post March 30, 2009, 06:19:03 PM
by Reporter
0 Replies
6035 Views
Last post May 13, 2009, 12:20:17 AM
by IT
0 Replies
6199 Views
Last post May 31, 2009, 12:43:01 AM
by IT
0 Replies
6602 Views
Last post June 07, 2009, 10:30:08 PM
by IT
0 Replies
6073 Views
Last post August 15, 2009, 11:18:53 PM
by Nick
0 Replies
5596 Views
Last post August 27, 2009, 11:01:52 AM
by IT
0 Replies
5385 Views
Last post September 20, 2009, 11:37:51 PM
by IT
0 Replies
7024 Views
Last post December 21, 2009, 02:43:50 PM
by IT
0 Replies
6651 Views
Last post January 05, 2010, 11:24:14 AM
by IT
0 Replies
5457 Views
Last post April 15, 2010, 03:33:57 PM
by Nick